

Supporting Information © Wiley-VCH 2014

69451 Weinheim, Germany

Integrating Perovskite Solar Cells into a Flexible Fiber**

Longbin Qiu, Jue Deng, Xin Lu, Zhibin Yang, and Huisheng Peng*

anie_201404973_sm_miscellaneous_information.pdf

Supporting Information

1 Experimental Section

(1) Synthesis of spinnable carbon nanotube array

Carbon nanotube (CNT) array was synthesized by chemical vapor deposition, and the synthetic details had been reported previously (*Acta Chim. Sinica* **2012**, *70*, 1523). The aligned CNT sheet was then drawn from the CNT array and wound onto the fiber substrate (*Adv. Mater.* **2014**, *26*, 2643). A post-treatment by isopropanol was used to achieve a close attachment of the CNT sheet on the fiber substrate.

(2) Synthesis of CH₃NH₃PbI₃

To synthesize CH₃NH₃PbI₃, a hydroiodic acid/water solution (45 wt%, 12.5 mL) was firstly added to a methylamine/ethanol solution (6.4 wt%, 124 mL), followed by reaction at room temperature for 2 h. The resulting solution was evaporated at 50 $^{\circ}$ C to produce a white powder of methylamine iodide. The methylamine iodide was then dissolved in ethanol and precipitated by diethyl ether. The product was further dried under vacuum and mixed with PbI₂ (99%) in γ -butyrolactone at 60 $^{\circ}$ C overnight to obtain CH₃NH₃PbI₃.

(3) Synthesis of Titanium diisopropoxide bis (acetylacetonate) and compact TiO₂ layer

Titanium diisopropoxide bis (acetylacetonate) was synthesized by mixing titanium (IV) isopropoxide and acetylacetone with a molar ratio of 1/2 in an ice bath. The n-type compact TiO₂ layer had been then produced by dip-coating a diluted titanium diisopropoxide bis(acetylacetonate)/ethanol solution (0.3 M), followed by pyrolysis at a temperature of 400 °C.

(4) Characterization

The structures were characterized by SEM (Hitachi FE-SEM S-4800 operated at 1 kV). X-ray diffraction patterns were obtained from an X-ray powder diffractometer

(D8 ADVANCE and DAVINCI.DESIGN). The absorbance spectra were recorded from an UV-Vis Spectrophotometer (Shimadzu, UV-2550). J-V curves were produced by a Keithley 2400 Source Meter under illumination (100 mW/cm²) of simulated AM1.5 solar light coming from a solar simulator (Oriel-Sol3A 94023A equipped with a 450 W Xe lamp and an AM1.5 filter). The light intensity was calibrated using a reference Si solar cell (Oriel-91150). The effective area was calculated by multiplying the diameter of the coated steel wire and length of the fiber-shaped solar cell.

Figure S1. X-ray diffraction pattern of CH₃NH₃PbI₃ layer.

Figure S2. UV-vis absorption spectra of $CH_3NH_3PbI_3$ layer without and with the mesoporous TiO₂ layer.

Figure S3. SEM image of a broken compact TiO₂ layer.

Figure S4. Typical J-V curves of fiber-shaped perovskite solar cells without and with the mesoporous TiO₂ layer.

Figure S5. Photographs of a fiber-shaped perovskite solar cell before (a) and after bending (b).

Figure S6. a. Side view of a spinnable CNT array with a height of 250 μ m. **b.** A transparent conducting CNT sheet shown by the red arrow.